茉莉花新闻网

中華青年思想與行動的聚合地

如何证明存在 1000 个连续的正整数中恰好有五个素数? - 知乎

下面认为1是合数。因为“合数”比“非素数”好听多了。

为了直观,我们把正整数列成一排。下面有一条线,这条线的长度刚好够框住1000个正整数(认为每个数都占据同样大小的位置)。这条线可以左右滑动,图中它在最左端,它可以一直往右滑。

在现在的位置,横线上有许多个素数(显然超过5个[1])和更多个合数[2]。我们需要证明的就是,它从这里一直往右滑,总有一天会滑到这样一个位置,这条横线上有5个素数和995个合数。

这条横线每向右滑一步,会吐出一个数并吞入一个数。可能的情况有四种:

1、吐出一个素数,吞入一个素数,横线上的素数个数没有变化。

2、吐出一个素数,吞入一个合数,横线上少了1个素数。

3、吐出一个合数,吞入一个素数,横线上多了1个素数。

4、吐出一个合数,吞入一个合数,横线上的素数个数没有变化。

总之,横线滑动过程中,上面的素数的个数只会一个一个地变化,不会从4个跳到6个,也不会从6个跳到4个。

而横线将会到达这样一个位置,横线画住这1000个数: 1001!+2, 1001!+3, 1001!+4,cdots, 1001!+1001

因为 1001!=1times2times3timescdotstimes10012, 3, 4,cdots, 1001 中每一个数的倍数,所以 1001!+2 也是 2 的倍数,1001!+3 也是 3 的倍数,……,1001!+1001 也是 1001 的倍数。

所以,这1000个数全都是合数。在这里,横线上素数的个数是0

在从开始滑到这里的过程中,横线上素数的个数从“许多”(超过5个)变化到了0。而这种变化是一个一个的,不会跳过任何一个数。

所以,在这之间存在一个位置,横线上恰好有5个素数。

QED.


课后习题:

在一个圆周上均匀分布着一些黑色或白色的珠子,其中黑珠子和白珠子的个数都是偶数。请证明:这个圆上存在一条弧,该弧恰包含了黑珠子的一半和白珠子的一半。


答案在精选评论。

这个东西叫做“离散的介值定理”。如果需要证明就反证法,思路大概是:假设取不到5个,既然能取到5个以下,考虑第一次取到5个以下的那个点,它的上一步至少是6个,这一步就不是一个一个变化的,矛盾。所以一定取到了5个。


补充:这是猫。

svg>

参考

  1. ^168个——不过这不重要。
  2. ^832个——更加不重要。

同类信息

查看全部

茉莉花论坛作为一个开放社区,允许您发表任何符合社区规定的文章和评论。

茉莉花新闻网

        中国茉莉花革命网始创于2011年2月20日,受阿拉伯之春的感召,大家共同组织、发起了中国茉莉花革命。后由数名义工无偿坚持至今,并发展成为广受翻墙网民欢迎的新闻聚合网站并提供论坛服务。

新闻汇总

邮件订阅

输入您的邮件地址:

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram